
 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Introduction 
 

Microarray technologies and Next Generation Sequencing (NGS) 
techniques nowadays allow precise measurements of several types of 
within-cell molecular quantities. Gene expression data, methylation 
level measurements, proteomics and metabolomics information are 
just a few example of the “omics” data that such technologies are able 
to provide.  

Even though “omics” technologies simultaneously measure tens of 
thousands or more molecular quantities, researchers are often 
interested in identifying a relatively small subset of such 
measurements, known as biomarkers, which are relevant for the 
problem under study. A typical example is the identification of genes 
whose expressions statistically significantly differ among two or more 
conditions (i.e., differentially expressed genes). 

Identifying biomarkers that are relevant (informative) when 
considered in isolation is often useful for investigating biological 
systems’ underlying mechanisms. However, in some cases the 
identification of biomarker signatures is necessary instead. We define 
a biomarker signature as a minimal subset of molecular quantities that 
are maximally informative for a given task when considered jointly.  

 
 
 
 
 
 

 
 

 
  

 
 

For example, a researcher may be interested in finding the smallest 
subset of genetic variants (e.g., Single Nucleotide Polymorphisms, 
SNPs) that considered together are maximally predictive with respect 
to the development of osteoporosis in elderly women. As a further 
example, one may focus on finding the smallest number of CpG sites 
whose methylation levels discriminate with the maximal possible 
accuracy among different types of lung cancers. In both examples it is 
crucial to identify the set of biomarkers providing the highest possible 
accuracy; at the same time, it is necessary to take into account that the 
cost of devising, realizing and routinely performing a clinical test 
based on the signature is probably directly related to the number of 
involved biomarkers.  

A widely adopted approach for identifying new biomarker 
signatures consists in measuring a large set of molecular quantities 
from a sufficiently large sample of biological specimens, and then 
employing data-analysis approaches in order to select the most 
informative set of features.  

In the fields of statistics and machine learning the task of 
identifying the most relevant variables for the problem at hand is 
known as feature or variable selection [1]. Numerous methods have 
been developed for addressing the problem. A recent successful 
approach based on local causal discovery, namely the Max-Min Parent 
Children (MMPC) algorithm, has been described in [2]. Unlike some 
other methods, this approach is principled in the sense that it provides 
theoretical guarantees under which the methods soundly solve the 
feature selection problem. In particular, MMPC attempts to retrieve 
(a subset of) the Markov-Blanket (MB) of the considered outcome. 
The MB of a target variable is the set of variables conditioned upon 
which any other set of variables becomes independent by the target. It 
has been theoretically demonstrated that, under broad assumptions, 
the MB of a variable coincides with its minimal-size, most-
informative signature [3]. This theoretical result was recently 
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supported by large scale evaluations [4,5] that have experimentally 
demonstrated local causal discovery algorithms' efficacy in finding 
highly predictive signatures. 

MMPC operates as a Constraint-Based (CB) variable selection 
algorithm. The operation of all such CB methods iteratively applies, 
based on a search strategy, Conditional Independence Tests (CITs) 
for characterizing the data distribution and identifying the variables 
(not) belonging to the MB. CITs, hereafter represented as Test(X, Y 
|Z), are statistical procedures that assess the null hypothesis “X and 
Y are independent given Z”, where X and Y are two random 
variables, the conditioning set Z is a (possibly empty) set of random 

variables, and X,Y  Z. Intuitively, a CIT assesses whether X gives 
any additional information for Y (and vice-versa) once Z is known.  

CITs role within CB algorithms is pivotal; employing an 
inappropriate CIT would lead to a poorly approximated MB and 
consequently to a suboptimal signature. The Fisher Z test [6] is 
currently the most widely employed conditional independence test for 
cases when all variables, including the target, are continuous. The 
Fisher test assumes linear relations among variables as well as normally 
distributed error terms: assumptions that are quite unlikely to hold in 
omics data. For discrete data testing is typically implemented with 

asymptotic G2 and χ2 tests [7] or exact permutation-based versions of 
these tests [8]. Attempts have been performed in order to develop 
sample-efficient CIT not relying on parametric assumptions [9], but 
further research in this field is needed: in particular, large scale 
evaluations for comparing different CITs’ respective performances are 
largely missing. To the best of our knowledge, up to date no CIT for 
continuous predictors / multi-class target has been applied and 
evaluated for CB algorithms.  

In this paper, we devise a CIT specifically for cases where all 
predictors are numerical (continuous) and the target outcome 
represents multiple classes (categories). This is a common scenario in 
studies dealing with “omics” data that look for molecular signatures 
able to discriminate among different conditions (e.g., different cancer 
stages or types). The Fisher Z test is usually employed in these 
settings, after encoding the outcome as a discrete, integer variable; this 
workaround introduces a possibly unnatural order among outcome 
categories and assumes linear relationships among regressors and 
outcome. The CIT we develop, named Multi-Class Conditional 
Independence Test (MC-CIT) is based on the multinomial logistic 
regression and is turned into a test by employing the log-likelihood 
ratio test for model selection [10]. The multinomial Logistic models 
are Generalized Linear Models (GLM [11]) specifically devised for 
modeling multi-class outcomes; we thus expect MC-CIT to 
outperform the Fisher Z test in such settings. 

In order to support our claim, we contrasted the newly proposed 
test against both the prototypical Fisher Z and G2 tests, in an 
extensive evaluation involving seven high-dimensional, multi-class 
gene expression studies. The following sections describe MC-CIT 
theoretical basis and implementation details, along with the 
experimentation protocol employed for assessing its performances.  

Notably, the results of the experimentation underlined the 
superior performances of MC-CIT against the Fisher Z test, in terms 
of both predictive capability and parsimoniousness of the selected 
biomarker signatures. 

 
Experimental procedures  
 

Let’s assume that Y is a categorical random variable representing a 
multi-class outcome, X a continuous random variable and Z a set of 

continuous random variables; let’s indicate with Ind(X,Y|Z) the MC-
CIT null hypothesis of independence “Y is independent by X given 
Z”. Assuming that Ind(X,Y|Z) holds implies that X is not necessary 
for predicting Y once Z is known; under this respect the MC-CIT 
can be devised as a nested-model selection procedure, where the “full” 
model employs {X, Z} as regressors for Y, while the alternative 
model employs only {Z} [12]. When the full model shows a 
statistically significantly better fit than the alternative model, then the 
null hypothesis Ind(X,Y|Z) can be rejected, i.e., X and Y are 
associated given Z. When the two models are statistically 
indistinguishable then the null hypothesis cannot be rejected and the 
algorithm accepts that the conditional independence holds. 

Following these considerations, we implemented the MC-CIT as 
a log-likelihood ratio test for nested-model selection, where the full 
and alternative models are fitted with either a Multinomial Logistic 
(ML, for categorical outcomes) or with an Ordered Logit (OL [11], 
for ordered outcomes) regression approach. In both cases, let LogLFull 
and LogLAltern be the log-likelihood of the full and alternative model, 
respectively; then the quantity D 

 
     (                    ) 

 
follows a χ2 distribution with one degree of freedom, under the 
assumption that Ind(X,Y|Z) holds. Given D and its theoretical 
distribution we calculate a p-value for the MC-CIT null hypothesis. 

The key reason for preferring the ML and OL regressions over 
the simpler Fisher Z test linear approach is that these two regression 
procedures are specifically devised in order to model discrete 
outcomes over continuous regressors. We thus expect ML and OL to 
better model multi-outcome data and consequently to enhance the 
detection of true conditional dependencies. Specifically, given a set of 
N regressors W and a binary outcome T, the standard logistic 
regression model can be expressed as: 

 

  (
  (    )

    (    )
)        

 
where β is the set of model’s coefficients, Wi represents the values 
that the regressors assume for the ith sample, and Pr(Ti = 1) is the 
probability that Ti = 1. 

The ML regression extends the standard logistic regression to 

categorical outcomes by introducing K-1 set of coefficient βk, where 
K is the number of different values that the outcome can assume:  
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Few simple mathematical operations bring to the following 

formulation: 
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The probability Pr(Ti = K) can be calculated by taking in 

consideration that the whole set of probabilities Pr(Ti = k), k = 1, 
…, K must sum up to 1: 
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In short, for a given sample the ML regression employs K – 1 
different equations for estimating the probability of belonging to each 
outcome class.  

For ordinal outcomes we adopted a different extension of the 
logistic regression, the Ordered Logit models. The principle behind 
OL models is that the outcome T is supposed to be the observable 
realization of a latent variable T*. The relationships between T and 
T* is governed by the following set of equations: 

 

  {

                          
         

     
 

                  

 

 
where µ is a set of K -1 coefficients to be estimated from data. In 
turn, the latent variable T* is linked to the vector of covariates W as 
follows: 

 
  
          

 
where β is again a set of N coefficients and ε is a random disturbance 
term that is supposed to follow a logistic distribution. Other choices 

of ε’s parametric form lead to different types of models, e.g., Probit 
models in case of Gaussian noise.   

The OL regression requires the estimation of N+K-1 parameters 

vs. (K-1) · N for the ML regression. Thus, OL regression requires 
fewer samples to fit than ML regression and for the same sample size 
it exhibits less variance in the estimation of the parameters. This is 
possible because OL regression exploits the outcome categories’ 
intrinsic order. On the other hand, OL is less general than ML since it 
can only be applied in case the outcome is ordinal.  
 

An extensive evaluation over seven high-dimensional datasets was 
performed in order to assess MC-CIT performances. All datasets 
contain gene expression data that were produced in cancer-related 
studies and are available in the Gene Expression Omnibus website 
[13,14].  

Table  reports the datasets’ characteristics. Appendix A reports 

the preprocessing steps applied on the data. 
We contrasted the proposed MC-CIT against the prototypical 

Fisher Z and G2 test. All tests were embedded, in turn, within the 
local causal discovery, constraint-based MMPC algorithm [2].  

MMPC identifies all the variables that cannot be made 
independent by the outcome, regardless by what conditioning set is 
considered. More formally, given a set of variables D and a target 
variable Y the MMPC algorithm applies an efficient heuristic in order 

to retrieve the set of variables Χ ⊆ D such that, for each X ∈ Χ, 

Ind(X, Y|Z) does not hold for any conditioning set Z ⊆ D/{X}. 
Notably, under the assumption that the distribution of the data can 
be faithfully represented by a Bayesian Network [15] and that there 
are no statistical errors in the results of the independence tests, the 
variables identified by the MMPC algorithm correspond to the set of 
network nodes that are the parents and the children of the target 
variable (hence the name of the algorithm)1. Signatures retrieved by 
the MMPC algorithms proved to be particularly well-performing in 
term of predictive capabilities [4], even though the parents-children 
set consists of only a subset of the Markov Blanket. 

 

 

 

 
The MMPC algorithm requires two different user-specified 

parameters: conditioning sets’ maximal size k-max and the significance 

threshold α. The latter is used for rejecting/accepting the null 
hypotheses of conditional independence. In our experimentation we 

vary α in {0.01, 0.05}, since these values are conventionally employed 
for assessing statistical tests’ significance. The k-max parameter 
indicates the maximal size allowed for Z in Test(X,Y|Z), and it has 
an interesting graphical interpretation. Assuming that the distribution 
of the data can be faithfully represented by a Bayesian Network (BN), 
k-max represents our prior belief on the minimal number of 
outcome’s neighbors necessary for d-separate the outcome from any 
other node (see [2] for further explanations). Notably, in our analyses 
we used only gene expression data, and gene regulatory networks are 
believed to be quite sparse [16]; consequently, during the 
experimentation we vary k-max in {3, 4}.  

A simple data discretization procedure was applied in all analyses 
involving the G2 test: continuous values were assigned to one category 
among “low”, “medium” and “high”, depending by whether the 
values were falling respectively below, within or above the mean +/- 
the standard deviation of the respective variable. 

We furthermore included the Lasso feature selection method [17] 
in our experimentation, in order to characterize MC-CIT 
performances against one of the currently cutting-edge feature 
selection algorithm. The Lasso algorithm belongs to the GLM class, 
and its objective function trades off the squared error on the training 
data with the sum of absolute values of the coefficients (norm-1 

penalty). A parameter λ dictates the trade-off: a larger λ penalizes 

more for larger absolute weights. When λ is zero the standard least-

squares fitting is obtained. As λ grows more and more variables obtain 
zero coefficients and are effectively removed from the model (are not 
selected). In this sense, the Lasso algorithm performs what is called 

embedded variable selection. Thus, larger λ values provide 

parsimonious models that may underfit, while low λ values provide 
more complex models that may overfit.  
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The optimal number of covariates that should be included into 
the model is not known in advance, and thus one should evaluate 
several lambda values sampled from a sufficiently wide interval. Some 
initial investigations pointed out that a lambda value of 0.2 was able 
to induce, on average over all the datasets included in this study, small 
models with approximately 5 (5.43) variables. A lambda value of 0.05 
was instead leading to much larger models with ~60 (61.86) 

variables. Thus, we decided to vary the penalty term λ in {0.05, 0.1, 
0.15, 0.20}. 

Notably, the Lasso algorithm can act as a feature selection 
procedure, as a regression algorithm, or as both at the same time. 
When the Lasso algorithm is used to select variables we refer to it as 
the Lasso selection, while Lasso regression will indicate the Lasso 
procedure employed as regression algorithm.  

All feature selection methods were combined with three different 
classifiers, in order to produce testable predictions: Support Vector 
Machines (SVM, [18,19]), Lasso regression and Multinomial 
Logistic regression (the latter was substituted by the Ordinal Logit 
regression in case of ordinal outcome). SVM were employed 
following the paradigm “one-vs.-all”, i.e., a different binary SVM 
model is fitted for each category of the outcome, while all other 
categories are considered as a unique alternative class. We employed 
the linear, polynomial (degree 2 and 3) and Gaussian kernel functions, 
and the user-specified cost parameter C was set to {1,10}. ML and 
OL regression do not require the user to specify any parameter, while 

Lasso regression penalty term λ was varied as reported above. 
Summarizing, we employed four different feature selection 

strategies: the Lasso selection method and the MMPC algorithm 
coupled in turn with the MC-CIT, Fisher Z and G2 test. Each feature 
selection method was coupled in turn with three different classifiers: 
SVM, Lasso regression and ML/OL models.2 

 
 
 
 
 
 

 
The nested-cross validation procedure [20] was employed for 

simultaneously (a) optimizing the parameters of both feature selection 
methods and classifiers (b) selecting the best classifier for each 
combination of dataset and feature selection method, and (c) 
providing unbiased estimates of the classification performances. 
Standard cross-validation consists in splitting the data in several non-
overlapping folds; each fold is hold out in turn for testing purposes, 
while the rest of the data is used for training. Nested cross-validation 
is a generalization of the cross-validation procedure: an outer loop of 
cross-validation is employed for performance estimation, while an 
inner cross-validation loop is performed in each training-set for 
optimizing algorithms’ parameters. Accuracy (i.e., percentage of 
correct predictions) was employed as performance metric; the two-
side binomial test [21] was employed for detecting statistically 
significant differences among methods' accuracies. This statistical test 
is conceptually similar to the Pearson's Chi Squared test for 2x2 
contingency tables; however, contrarily to the latter, the binomial test 
is an exact test. 

 
Results  

 
Table 2 reports the main results of the experimentation. The best 

nested cross-validated performance is reported for each combination 
of dataset and feature selection method (“best” over the three 

classifiers). The first three columns show the results obtained by 
coupling the MMPC algorithm with the three different conditional 
independence tests. The next column reports the results obtained by 
the Lasso algorithm employed as feature selection method.  The last 
column shows the results of the trivial classifier, i.e., the performances 
that one obtains by predicting the class that appears more frequently 
in the training set.  Performances are reported as mean accuracy 
(averaged over nested-cross-validation outer-loop folders) ± standard 
deviation. Binomial test p-values for statistically comparing the 
difference in accuracy between MC-CIT and the other methods are 
reported in parentheses. Notice that the binomial test was always 
applied after pooling together all the predictions from the outer-loop 
of the nested-cross validation procedure, in order to increase the 
power of the test. The final row shows the “global” performances 
calculated by pooling together the predictions over all datasets.  No 
method proved to outperform the trivial classifier for the GDS2373 
dataset; we thus dropped the results related to this dataset. 

The number of selected feature is reported in Table 3. Averages 
and standard deviations are calculated on the outer-loop of the nested 
cross-validation procedure. Two-tailed t-test p-values for comparing 
MC-CIT performances against other methods results are reported in 
parentheses. The last row reports the average results over all datasets. 

Some considerations now follow. First, MC-CIT always 
outperforms or equals the Fisher Z test. Most relevantly, the 
difference between the two methods is statistically significant for two 
datasets (GDS2855 and GDS3233) and when all predictions are 
pooled together (p-value < 0.05). Moreover, the MC-CIT method 
leads to the selection of fewer variables than the Fisher Z test for four 
datasets out of six, as well as on average over all datasets. The G2 test 
and the Lasso method usually achieve better results than MC-CIT in 
terms of performance (although not statistically significantly better at 
the level of 0.05), although in the expense of selecting more variables 
(statistically significantly). Specifically, on average the G2 test and the 
Lasso select about 4 and 6 times more variables, respectively. 

All feature selection methods statistically significantly 
outperformed the trivial classifier. Moreover, all methods show small 
standard deviation values in terms of accuracy, denoting an 
appreciable stability. However, the Lasso and G2 test show a large 
variability in terms of number of selected variables.  

Furthermore, we investigated whether the average number of 
selected features is somehow linked to datasets’ characteristics. For 
both Lasso selection and MMPC coupled with MC-CIT we found 
that the average number of selected variables is highly correlated with 
both sample size and number of outcome classes (Pearson correlation 

ρ > 0.75). A similar effect is found also for the Fisher Z test, though 

not equally strong (ρ  0.55). MMPC coupled with the G2 test tends 
to select fewer variables when the sample size and the number of 

outcome classes increase (ρ < -0.65). The MMPC algorithm does 
not include in the signature any variable whose (conditional) 
association with the outcome cannot be assessed. As the number of 
outcome’s classes increases, the G2 test has less power, and our 
implementation of the G2 test forgoes assessing conditional 
independencies when the expected power is excessively low (see [22] 
for further details on the heuristic employed for ensuring a sufficient 
power for the G2 test). Finally, the number of selected features does 
not seem to be correlated with the total number of available features 

(|ρ| < 0.25 in all cases). 
No feature selection method showed to constantly produce better 

results when coupled with a particular classifier. However, the Lasso 
regression proved to be the classifier that most often provides the best 
performances, followed by the SVM and the multinomial logistic 
models. 
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Discussion 

 
In this work we introduced a new conditional independence test, 

namely the Multinomial-Logistic Conditional Independence Test 
(MC-CIT), explicitly devised for being coupled with constraint-based 
methods for biomarker signature identification in multi-class outcome 
data. We performed an extensive evaluation of the new test on seven 
different gene-expression datasets, contrasting the MC-CIT against 
the Fisher Z test, which is, to the best of our knowledge, the most 
commonly-employed CIT for multi-class problems with continuous 
regressors. We further contrasted the new test against a prototypical 
CIT for discrete data (after performing an appropriate discretization 
of the continuous regressors) and against the provably well 
performing Lasso algorithm.  

The results confirmed our initial hypothesis: for multi-class 
outcome problems MC-CIT allows the identification of smaller and 
better performing (in a statistically significant way) signatures, with 
respect to the widely employed Fisher Z test. This finding suggests 
employing the MC-CIT instead of the Fisher Z test for feature 
selection tasks with multi-class outcome. 

The GDS2547 datasets is the only case when the MC-CIT selects 
a significantly larger set of features with respect to the Fisher Z test. 
Interestingly, a visual inspection of the GDS2547 data revealed the 
presence of strong linear relationships between the outcome and the 
features selected by MMPC coupled with the Fisher Z test. The latter 
assumes that (and has more statistical power when) the data are 
(approximately) linear. Thus the presence of linear relationships in the 
data can be a plausible cause for Fisher Z test better performances (in 
terms of number of selected features). 

Somewhat surprising, the G2 test proved to slightly, non-
significantly outperform the MC-CIT in few cases, at the cost of 
selecting four times more variables (on average). This behavior has 
not a clear explanation yet. 

No feature selection method was able to identify a predictive 
signature for the GDS2373 dataset. A possible explanation is that the 
transcriptomic data reported in this dataset are not informative with 
respect to the outcome (tumor stage). Interestingly, the researchers 
that first introduced this datasets reached similar conclusion. In their 
analysis, the data were clustered according to an unsupervised 
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hierarchical clustering method, and the resulting clustering groups 
were not associated with the disease stage [23].  

Finally, MMPC coupled with MC-CIT achieves levels of 
performance that are fairly competitive with the Lasso selection 
results. The Lasso algorithm provides moderately more accurate 
models that are, at the same time, more complex than the ones 
provided by the MMPC coupled with MC-CIT. However, these 
results may depend by the parameter configurations tested in our 

experimentations: testing different λ, α or k-max values may lead to 
different results. 

One limitation of this study is that it is not possible to compare 
Fisher Z test and MC-CIT computational requirements, since we did 
not make any attempt to optimize the implementation of the new test. 
Furthermore, our experimentations were limited to Gene Expression 
data only. However, we expect that the main conclusions of this study 
should hold for any other type of “omics” data (e.g., RNA-seq, 
miRNA, methylation data) that share the main characteristics of the 
datasets involved in our experimentations: continuous measurements, 
high dimensionality and multi-class outcome. 

In conclusion, our findings indicate that MC-CIT should be 
preferred to the Fisher Z test in studies aiming at identifying 
biomarker signatures in “omics” data with multi-class outcome. 
Furthermore, MC-CIT is a valid alternative against the G2 test, which 
requires an additional preprocessing step of data discretization. 
Finally, when compared against the Lasso selection MMPC coupled 
with MC-CIT demonstrated to be able to select smaller and 
statistically equally predictive biomarker signatures, within the scope 
of our experiments.  
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